haku: @author Boriouchkine, Alexandre / yhteensä: 2
viite: 1 / 2
« edellinen | seuraava »
Tekijä:Boriouchkine, Alexandre
Työn nimi:Dynamic modelling of a BioGrate boiler
BioGrate -kattilan dynaaminen mallinnus
Julkaisutyyppi:Diplomityö
Julkaisuvuosi:2010
Sivut:xiii + 137 s. + liitt. 4      Kieli:   eng
Koulu/Laitos/Osasto:Biotekniikan ja kemian tekniikan laitos
Oppiaine:Prosessien ohjaus ja hallinta   (Kem-90)
Valvoja:Jämsä-Jounela, Sirkka-Liisa
Ohjaaja:Zakharov, Alexey
OEVS:
Sähköinen arkistokappale on luettavissa Aalto Thesis Databasen kautta.
Ohje

Digitaalisten opinnäytteiden lukeminen Aalto-yliopiston Harald Herlin -oppimiskeskuksen suljetussa verkossa

Oppimiskeskuksen suljetussa verkossa voi lukea sellaisia digitaalisia ja digitoituja opinnäytteitä, joille ei ole saatu julkaisulupaa avoimessa verkossa.

Oppimiskeskuksen yhteystiedot ja aukioloajat: https://learningcentre.aalto.fi/fi/harald-herlin-oppimiskeskus/

Opinnäytteitä voi lukea Oppimiskeskuksen asiakaskoneilla, joita löytyy kaikista kerroksista.

Kirjautuminen asiakaskoneille

  • Aalto-yliopistolaiset kirjautuvat asiakaskoneille Aalto-tunnuksella ja salasanalla.
  • Muut asiakkaat kirjautuvat asiakaskoneille yhteistunnuksilla.

Opinnäytteen avaaminen

  • Asiakaskoneiden työpöydältä löytyy kuvake:

    Aalto Thesis Database

  • Kuvaketta klikkaamalla pääset hakemaan ja avaamaan etsimäsi opinnäytteen Aaltodoc-tietokannasta. Opinnäytetiedosto löytyy klikkaamalla viitetietojen OEV- tai OEVS-kentän linkkiä.

Opinnäytteen lukeminen

  • Opinnäytettä voi lukea asiakaskoneen ruudulta tai sen voi tulostaa paperille.
  • Opinnäytetiedostoa ei voi tallentaa muistitikulle tai lähettää sähköpostilla.
  • Opinnäytetiedoston sisältöä ei voi kopioida.
  • Opinnäytetiedostoa ei voi muokata.

Opinnäytteen tulostus

  • Opinnäytteen voi tulostaa itselleen henkilökohtaiseen opiskelu- ja tutkimuskäyttöön.
  • Aalto-yliopiston opiskelijat ja henkilökunta voivat tulostaa mustavalkotulosteita Oppimiskeskuksen SecurePrint-laitteille, kun tietokoneelle kirjaudutaan omilla Aalto-tunnuksilla. Väritulostus on mahdollista asiakaspalvelupisteen tulostimelle u90203-psc3. Väritulostaminen on maksullista Aalto-yliopiston opiskelijoille ja henkilökunnalle.
  • Ulkopuoliset asiakkaat voivat tulostaa mustavalko- ja väritulosteita Oppimiskeskuksen asiakaspalvelupisteen tulostimelle u90203-psc3. Tulostaminen on maksullista.
Sijainti:P1 Ark Aalto  3525   | Arkisto
Avainsanat:dynamic BioGrate model
BioGrate simulator
dynaaminen BioGrate -malli
BioGrate simulaattori
Tiivistelmä (fin): Kasvava uusiutuvien polttoaineiden käyttö on luonut uusia haasteita energiantuotannon tehokkuuteen.
Biomassa on yksi tärkeimmistä uusiutuvien energiamuotojen raaka-aineista, minkä vuoksi erilaisia mahdollisia biomassan lähteitä täytyy harkita energian tuotantoon.
Biopolttoaineen ominaisuudet eroavat kuitenkin toisistaan paljon riippuen materiaalin alkuperästä ja käsittelytavasta.
Tämä aiheuttaa vaihtelua palamisessa ja luo tarvetta uusien säätöstrategioiden suunnittelulle.

Yksi viime aikoina kehitetyistä menestyksekkäistä teknologioista on MW Biopower Oy:n kehittämä biopolttoainetta käyttävä BioGrate-kattilaprosessi.
Biomassan polttaminen on monimutkainen prosessi, joka sisältää useita toisistaan riippuvia kemiallisia reaktioita.
Lisäksi kattilan olosuhteet vaikuttavat merkittävästi syntyvien palamistuotteiden, kuten tervan, kaasujen ja hiilen määriin sekä reaktionopeuksiin.
Tämän vuoksi kattilan säätöstrategian suunnittelu vaatii yksityiskohtaisen dynaamisen prosessimallin.

Tämän diplomityö tavoitteena on ollut kehittää dynaaminen malli BioGrate-kattilalle.
Dynaamisen mallin tarkoituksena on mahdollistaa prosessissa esiintyvien kemiallisten ja fysikaalisten ilmiöiden yksityiskohtaisen tarkastelun.
Työn kirjallisuusosa käsittelee kattilan eri osien kemiallisia reaktioita ja termodynamiikkaa.
Lisäksi jokaiselle prosessin osalle on esitetty sitä kuvaava kirjallisuudessa esitetty dynaaminen malli.

Diplomityön kokeellisessa osassa BioGrate-kattilan tulipesälle on kehitetty MATLAB-ympäristössä graafisella käyttöliittymällä varustettu dynaaminen simulaattori.
Mallin avulla kattilan tulipesän toimintaa on simuloitu erilaisilla parametriarvoilla mukaan lukien polttoaineen kosteus, laatu ja palamisilma.
Herkkyysanalyysi osoitti, että palamisaika kasvaa lineaarisesti polttoaineen kosteuspitoisuuden lisääntyessä.
Tarkasteltaessa polttoaineen halkaisijan vaikutusta palamisprosessiin huomattiin isojen kappaleiden lyhentävän pedin kokonaispalamisaikaa, koska lämmön johtuminen paranee merkittävästi halkaisijan kasvaessa.
Simuloinneissa paksumpi puunkuori pidensi vain lievästi palamisaikaa.
Palamisilman vaikutusta tarkasteltaessa hapen puute hidasti palamisprosessia, mutta ilman ylimäärä pienien polttoainekappaleiden kohdalla pidensi palamisaikaa ilman jäähdyttäessä polttoainetta.
Simulaattorilla saatujen tulosten on havaittu vastaavan hyvin kirjallisuudessa esitettyjä tuloksia.
Tiivistelmä (eng): Increasing utilization of renewable energy has created new energy efficiency challenges for industry.
Biomass is one of the most important raw materials for renewable energy.
All the available biomass sources have to be considered for energy production.
Fuel properties of biomass vary a lot depending on its origin, on processing and handling for fuel.
Variable properties cause fluctuations in combustion and set challenges to develop new combustion control strategies.

One of the latest successful processes developed, which use wood waste as a fuel, is a BioGrate-boiler technology developed by MWBiopower.
The combustion of wood waste is, however, a very complex process involving several highly coupled chemical reactions.
Furthermore, operational conditions of the furnace greatly affect the yields of chemicals produced during the combustion process, i.e. fractions of tars, gases and char.
Moreover, not only the yields of chemicals differ under different combustion conditions, but also their reactivity in succeeding reactions.
As a result of such complexity, optimization of a boiler control strategy requires a detailed process model.

The aim of this Master's thesis is to develop a dynamical model for a BioGrate boiler.
The purpose for the modelling work is to construct a dynamic model that provides an insight into the chemical and physical phenomena occurring inside the process.
The literature part of the thesis discusses the chemical and thermodynamic phenomena involved in the boiler process, including fuel combustion, flue gas convection and heat exchange between the flue gas, water and steam.
Each process part is then broken down into chemical reactions and physical processes.
Each chemical reaction and physical process is then discussed in detail, and an appropriate model is presented for each chemical reaction and physical phenomenon.

In the experimental part, the dynamical simulator of the furnace of a BioGrate boiler is developed and implemented in the MATLAB environment.
In addition, a GUI is developed in order to provide user-friendly operability, and then attached to the simulator.
After the implementation of the simulator, several simulation studies were conducted with various process parameters, including fuel moisture content, fuel quality and combustion air flow.
The simulation results were investigated in order to find the most significant parameters affecting the combustion process inside the furnace.

The results of the sensitivity analysis showed that the combustion time increased linearly with an increase in the moisture content.
The study on the particle diameter indicated that the larger the particle diameter the shorter is the combustion time, because heat conduction improves significantly with an increased particle diameter.
Simulations with different wall thicknesses revealed insignificant dependence of the combustion time on the particle wall thickness: the combustion time increased only slightly with an increase in wall thickness.
A study on the effect of the air flow indicated that oxygen deficiency slowed down the combustion process.
However, excess air, on the other hand, increased the combustion time by cooling the bed with consisting of small particles.
The results obtained from the simulator were found to be in agreement with those reported in the literature.
ED:2010-07-05
INSSI tietueen numero: 39809
+ lisää koriin
« edellinen | seuraava »
INSSI