haku: @keyword kinect / yhteensä: 7
viite: 6 / 7
Tekijä: | Siikonen, Samuel |
Työn nimi: | 3D etäisyyskameran tarkkuuden määrittely käyttäen tasopintoja |
Determination of accuracy of a range camera using planes as the method | |
Julkaisutyyppi: | Diplomityö |
Julkaisuvuosi: | 2013 |
Sivut: | iv + 58 + [5] Kieli: fin |
Koulu/Laitos/Osasto: | Maankäyttötieteiden laitos |
Oppiaine: | Fotogrammetria (Maa-57) |
Valvoja: | Haggrén, Henrik |
Ohjaaja: | Rönnholm, Petri |
OEVS: | Sähköinen arkistokappale on luettavissa Aalto Thesis Databasen kautta.
Ohje Digitaalisten opinnäytteiden lukeminen Aalto-yliopiston Harald Herlin -oppimiskeskuksen suljetussa verkossaOppimiskeskuksen suljetussa verkossa voi lukea sellaisia digitaalisia ja digitoituja opinnäytteitä, joille ei ole saatu julkaisulupaa avoimessa verkossa. Oppimiskeskuksen yhteystiedot ja aukioloajat: https://learningcentre.aalto.fi/fi/harald-herlin-oppimiskeskus/ Opinnäytteitä voi lukea Oppimiskeskuksen asiakaskoneilla, joita löytyy kaikista kerroksista.
Kirjautuminen asiakaskoneille
Opinnäytteen avaaminen
Opinnäytteen lukeminen
Opinnäytteen tulostus
|
Sijainti: | P1 Ark Aalto 463 | Arkisto |
Avainsanat: | range camera accuracy Kinect Matlab etäisyyskamera tarkkuus Camcube |
Tiivistelmä (fin): | Työn tavoitteena oli määrittää vaihe-eromittaukseen perustuvan etäisyyskameran (Camcube 3.0) sekä kolmiointiin perustuvan etäisyysmittausinstrumentin (Kinect) tarkkuus empiirisesti mittaamalla tähän tarkoitukseen erikseen valmistettua mittakenttää. Tarkkuus määritettiin vertailemalla eri mittausinstrumenteilla mitattuja tasoja. Kummankin mittausinstrumentin tuloksia verrattiin fotogrammetrisen menetelmän tuloksiin. Fotogrammetrinen menetelmä tarkoittaa tässä työssä valokuvien avulla tehtyä kohteiden mittausta. Tarkkuustekijöinä määritettiin yksittäisten tasojen muoto- ja sijaintitarkkuudet. Muototarkkuus laskettiin tasosta poikkeavien mittapisteiden etäisyyksien keskihajontana. Sijaintitarkkuuden laskentaa varten kummankin mittausinstrumentin mittausaineisto muunnettiin fotogrammetrisen menetelmän mittausaineistoon. Muunnos tehtiin rekisteröimällä eri aineistojen tasoja toisiinsa. Sijaintitarkkuus laskettiin koordinaattimuunnoksen jälkeen vertaamalla mittausinstrumenttien tasojen sijainteja fotogrammetrisen menetelmän tasojen sijainteihin. Tarkkuuksien määritystä varten fotogrammetrisessa menetelmässä käytetty digitaalikamera ja Camcube 3.0 kalibroitiin. Kalibrointi sisälsi kummankin tapauksessa linssivirheen korjauksen. Camcuben tapauksessa korjattiin myös etäisyysmittauksen virhe. Etäisyysmittauksen virhe korjattiin kahdella tavalla, jossa toisessa pyrittiin minimoimaan myös signaalinen periodinen virhe. Mitattavien pintojen suuntaus osoittautui merkittäväksi tekijäksi kummankin mittausinstrumentin tarkkuuden kannalta. Camcuben tapauksessa instrumentin aineisto oli systemaattisesti taaempana kuin fotogrammetrisen menetelmän. Kinectin aineistossa osa tasoista taas oli fotogrammetrisen aineiston etupuolella. Tasojen muototarkkuus oli Camcubella 14.605 mm ja 9.321 mm (periodinen korjaus mukana). Kinectin kohdalla muototarkkuus oli 21.208 mm. Työssä kaytettiin iWitness-, Geomagic- ja Matlab-ohjelmaa. iWitness-ohjelmaa käytettiin digitaalikameran kalibrointiin. Geomagic-ohjelmalla laskettiin tarkkuustulokset ja koordinaattimuunnokset. Camcuben aineiston hankintaan, linssivirheen ja etäisyysvirheen korjaukseen käytettiin Matlab-ohjelmaa. |
Tiivistelmä (eng): | Object of this thesis was to determine the accuracies of a range camera which uses phase difference method (Camcube 3.0) to calculate distance images and an instrument which uses laser triangulation method (Kinect). Accuracies were determined by measuring six planes placed in a test field which is constructed precisely for this thesis. Data of Camcube and Kinect were compared with measures from photogrammetric method, which means in this thesis measuring 3D data from pictures taken with digital camera. The accuracies in two sections: the build accuracy and the position accuracy. The build accuracy was calculated using error distances between data points associated to an average plane. A statistic factor used to compare the accuracies was a standard deviation of the error distances. The first step in calculating position accuracy was to transform the data from Camcube and Kinect to the coordinate system of the photogrammetric data. Transformation was calculated by registration of corresponding planes from both data sets. Finally, the position accuracy was calculated from the distance difference between planes from two data sets. For the purpose of reliable accuracy comparison, digital camera and Camcube were calibrated. Lens distortions were removed from both cameras. In addition, the Camcube's distance error was corrected. The Distance error was compensated in two different methods. One of these methods attempted to minimize, at the same time, the periodic error of a signal. The Orientation of the planes with respect to the instrument was found to have a vital role in the accuracy of the distance measurements. In the case of Camcube the data was systematically farther away than data gained from the photogrammetric method. In Kinect's data some planes were closer and some farther when compared to photogrammetric data. The build accuracy of Camcube data sets were 14.605 mm and 9.321 mm (with periodic compensation). In the case of Kinect the build accuracy was 21.208 mm. Software used in this thesis was iWitness, Geomagic and Matlab. iWitness was used in calibrating digital camera. Geomagic was used in calculating accuracy values and coordinate transformations. Acquisition of the data and error compensations for Camcube was solved using Matlab. |
ED: | 2013-04-08 |
INSSI tietueen numero: 46052
+ lisää koriin
INSSI