haku: @supervisor Laasonen, Kari / yhteensä: 7
viite: 2 / 7
Tekijä:Holmberg, Nico
Työn nimi:Tiheysfunktionaaliteoreettinen tutkimus vedynkehitysreaktiosta typpidoupatulla hiilinanoputkella
Hydrogen evolution reaction on a nitrogen doped carbon nanotube: a density functional theory study
Julkaisutyyppi:Diplomityö
Julkaisuvuosi:2014
Sivut:v + 89      Kieli:   fin
Koulu/Laitos/Osasto:Kemian tekniikan korkeakoulu
Oppiaine:Kemia   (KE3001)
Valvoja:Laasonen, Kari
Ohjaaja:Melander, Marko
Elektroninen julkaisu: http://urn.fi/URN:NBN:fi:aalto-201412113207
OEVS:
Sähköinen arkistokappale on luettavissa Aalto Thesis Databasen kautta.
Ohje

Digitaalisten opinnäytteiden lukeminen Aalto-yliopiston Harald Herlin -oppimiskeskuksen suljetussa verkossa

Oppimiskeskuksen suljetussa verkossa voi lukea sellaisia digitaalisia ja digitoituja opinnäytteitä, joille ei ole saatu julkaisulupaa avoimessa verkossa.

Oppimiskeskuksen yhteystiedot ja aukioloajat: https://learningcentre.aalto.fi/fi/harald-herlin-oppimiskeskus/

Opinnäytteitä voi lukea Oppimiskeskuksen asiakaskoneilla, joita löytyy kaikista kerroksista.

Kirjautuminen asiakaskoneille

  • Aalto-yliopistolaiset kirjautuvat asiakaskoneille Aalto-tunnuksella ja salasanalla.
  • Muut asiakkaat kirjautuvat asiakaskoneille yhteistunnuksilla.

Opinnäytteen avaaminen

  • Asiakaskoneiden työpöydältä löytyy kuvake:

    Aalto Thesis Database

  • Kuvaketta klikkaamalla pääset hakemaan ja avaamaan etsimäsi opinnäytteen Aaltodoc-tietokannasta. Opinnäytetiedosto löytyy klikkaamalla viitetietojen OEV- tai OEVS-kentän linkkiä.

Opinnäytteen lukeminen

  • Opinnäytettä voi lukea asiakaskoneen ruudulta tai sen voi tulostaa paperille.
  • Opinnäytetiedostoa ei voi tallentaa muistitikulle tai lähettää sähköpostilla.
  • Opinnäytetiedoston sisältöä ei voi kopioida.
  • Opinnäytetiedostoa ei voi muokata.

Opinnäytteen tulostus

  • Opinnäytteen voi tulostaa itselleen henkilökohtaiseen opiskelu- ja tutkimuskäyttöön.
  • Aalto-yliopiston opiskelijat ja henkilökunta voivat tulostaa mustavalkotulosteita Oppimiskeskuksen SecurePrint-laitteille, kun tietokoneelle kirjaudutaan omilla Aalto-tunnuksilla. Väritulostus on mahdollista asiakaspalvelupisteen tulostimelle u90203-psc3. Väritulostaminen on maksullista Aalto-yliopiston opiskelijoille ja henkilökunnalle.
  • Ulkopuoliset asiakkaat voivat tulostaa mustavalko- ja väritulosteita Oppimiskeskuksen asiakaspalvelupisteen tulostimelle u90203-psc3. Tulostaminen on maksullista.
Sijainti:P1 Ark Aalto  2545   | Arkisto
Avainsanat:density functional theory
electrocatalysis
tiheysfunktionaaliteoria
vedynkehitysreaktio
hiilinanoputki
elektrokatalyysi
Tiivistelmä (fin):Heteroatomeilla muokattujen hiilinanoputkien on muun muassa osoitettu katalysoivan vedyn sähkökemiallista muodostumisreaktiota suuremmalla aktiivisuudella kuin puhtaiden hiilinanoputkien.
Ero aktiivisuudessa johtuu heteroatomien aiheuttamista muutoksista nanoputken elektronirakenteeseen.
Ilmiötä on erittäin vaikea tutkia kokeellisesti.
Tietokonesimulaatiot sen sijaan soveltuvat erinomaisesti näiden muutosten karakterisointiin.

Tässä diplomityössä tutkittiin vedynkehitysreaktion Volmer-Tafel-mekanismia typpidoupatun (14,0)-hiilinanoputken pinnalla käyttämällä tiheysfunktionaaliteoreettisia simulaatioita.
Mallinnuksessa sovellettiin sekä molekyylidynamiikkaa että staattisia reaktiopolun määritysmenetelmiä.
Kokeellisesti sähkökemiallista aktiivisuutta mitataan elektrodipotentiaalin funktiona.
Jotta simuloidut tulokset olisivat vertailukelpoisia, niin kutsuttua kaksoisreferenssimenetelmää käytettiin potentiaaliriippuvuuden approksimoimiseen.

Elektrodipotentiaalin määritykseen käytetyn menetelmän oikeellisuus varmistettiin vertaamalla laskennallista ja kokeellista nollavarauspotentiaalia.
Nanoputken stabiileimmat pintapaikat vetyatomien adsorptiolle määritettiin vakuumissa.
Kahden protonin peräkkäisiä Volmer-reaktioita tutkittiin näillä pintapaikoilla happamassa vesiliuoksessa.
Reaktioiden aktivaatioenergioiden havaittiin laskevan voimakkaasti potentiaalin funktiona.
Ensimmäisellä protonilla aktivaatioenergia laski 0.7 eV:sta 0.2 eV:iin ja toisella 0.5 eV:sta 0.1 eV:iin, kun standardivetyelektrodiin suhteutettua potentiaalia muutettiin +0.5 V:sta -1.5 V:iin.
Vakiopotentiaaliolosuhteiden käyttö osoitettiin välttämättömäksi, jotta reaktion tarkka potentiaaliriippuvuus voitiin määrittää.
Typpidouppauksen ei havaittu vaikuttavan ensimmäisen Volmer-reaktion aktivaatioenergiaan vakiovarauksella.
Tarkempaa vertailua doupatun ja puhtaan nanoputken välillä ei kuitenkaan suoritettu.
Lopuksi tutkittiin pinnalle sitoutuneiden vetyatomien reaktiota vetymolekyyliksi.
Reaktion aktivaatioenergian todettiin olevan suuri eikä mekanismi ollut kemiallisesti järkevä.
Näin ollen Tafel-reaktion osoitettiin olevan mahdoton ideaalisella nanoputkella ja vedynkehitysreaktion tulisi edetä Volmer-Heyrovsky-mekanismilla.
Tiivistelmä (eng):Doped carbon nanotubes have been shown to catalyze, for example, the electrochemical formation of molecular hydrogen with a higher activity than undoped nanotubes.
This difference in activity arises due to changes in the electronic structure of the nanotube introduced by the dopant atoms.
This phenomenon is inherently difficult to study experimentally.
Computer simulations, on the other hand, can readily be applied to investigate these changes.

In this work, the Volmer-Tafel mechanism of the hydrogen evolution reaction (HER) was investigated on a nitrogen doped (14,0) carbon nanotube using density functional theory simulations.
Both molecular dynamics simulations and static reaction path search methods were utilized.
Experimentally, electrocatalytic activity is measured as a function of electrode potential.
In order to obtain comparable simulation results, the so-called double reference method was used to approximate the potential dependent behaviour.

The validity of the electrode potential scheme was verified by comparing the computational and experimental potentials of zero charge.
The most stable surface sites for hydrogen atom adsorption were determined in vacuum.
The consecutive Volmer reactions of two protons onto these sites were investigated in acidic solution.
The activation energy of both reactions showed a strong dependence on potential.
The activation energy of the first reaction decreased from 0.7 to 0.2 eV and that of the second from 0.5 to 0.1 eV, as potential was changed from +0.5 V to -1.5 V vs the standard hydrogen electrode.
Modeling the reaction at constant potential was shown to be necessary for obtaining an accurate potential dependence.
Nitrogen doping did not to influence the activation energy of the first Volmer reaction at constant charge; however; a full investigation between undoped and doped nanotubes was not performed.
The formation of molecular hydrogen from the two adsorbed hydrogen atoms showed a high activation energy and a chemically unrealistic mechanism.
Thus, the Tafel reaction was proven impossible on structurally ideal nanotubes and the Volmer-Heyrovsky mechanism should be the primary mechanism for HER.
ED:2014-12-21
INSSI tietueen numero: 50216
+ lisää koriin
INSSI