search query: @supervisor Sirèn, Kai / total: 146
reference: 75 / 146
« previous | next »
Author:Söderholm, Niklas
Title:Modelling and simulation of Stirling engine for micro-cogeneration
Publication type:Master's thesis
Publication year:2009
Pages:114 (+63)      Language:   eng
Department/School:Energiatekniikan laitos
Main subject:LVI-tekniikka   (Ene-58)
Supervisor:Sirén, Kai
Instructor:Alanne, Kari
OEVS:
Electronic archive copy is available via Aalto Thesis Database.
Instructions

Reading digital theses in the closed network of the Aalto University Harald Herlin Learning Centre

In the closed network of Learning Centre you can read digital and digitized theses not available in the open network.

The Learning Centre contact details and opening hours: https://learningcentre.aalto.fi/en/harald-herlin-learning-centre/

You can read theses on the Learning Centre customer computers, which are available on all floors.

Logging on to the customer computers

  • Aalto University staff members log on to the customer computer using the Aalto username and password.
  • Other customers log on using a shared username and password.

Opening a thesis

  • On the desktop of the customer computers, you will find an icon titled:

    Aalto Thesis Database

  • Click on the icon to search for and open the thesis you are looking for from Aaltodoc database. You can find the thesis file by clicking the link on the OEV or OEVS field.

Reading the thesis

  • You can either print the thesis or read it on the customer computer screen.
  • You cannot save the thesis file on a flash drive or email it.
  • You cannot copy text or images from the file.
  • You cannot edit the file.

Printing the thesis

  • You can print the thesis for your personal study or research use.
  • Aalto University students and staff members may print black-and-white prints on the PrintingPoint devices when using the computer with personal Aalto username and password. Color printing is possible using the printer u90203-psc3, which is located near the customer service. Color printing is subject to a charge to Aalto University students and staff members.
  • Other customers can use the printer u90203-psc3. All printing is subject to a charge to non-University members.
Location:P1 Ark Aalto  5904   | Archive
Keywords:Stirling engine
micro-CHP
residential building
performance assessment
Abstract (eng): Micro-cogeneration, specifically the simultaneous generation of thermal and electrical energy in residential buildings below 10 kWe provides an attractive option to reduce the environmental burden.
In particular Stirling engines, originally invented in the year 1816, are emerging on the market to challenge conventional oil- or gas-powered heating systems.
Characteristic strengths of external combustion engines are their high energy efficiency, low emissions, fuel flexibility, and operation with low noise and vibration.
However, viable operation regarding primary energy demand, C02 emissions, and economic costs requires a carefully optimised operational strategy that is sensitive to the energy mix, building type, and climate.
A whole-building-oriented simulation model is typically needed to discover the most energy-efficient system topologies.

In this work the IDA-ICE building simulation program is employed to assess a Stirling engine micro-CHP device following the model specifications of IEA/ECBCS Annex 42.
The simulation routine implemented, which has been validated through inter-program comparison, accounts for the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns.
The study contributes to the improvements obtained by adaptation to hourly changes in the energy generation mix and the utilisation of thermal exhaust through heat recovery.

The results suggest that a Stirling engine for micro-cogeneration can most viably be operated in a cold climate together with a fossil fuel-based energy mix.
However, the attractiveness of a micro-CHP plant can only be preserved with efficient exhaust gas heat recovery.
With the aid of optimally chosen operational strategies, exhaust gas heat recovery, and relevant thermal storage, the micro-cogeneration system generates savings of 3 - 5 % in primary energy consumption and C02 emissions.
The configuration investigated is, moreover capable of creating annual operational savings for any combination of fuels and electricity prices between 0.05 euros/kWh and 0.15 euros/kWh.
Financially, a Stirling engine for micro-cogeneration can most viably compete against electric and oil-powered furnaces for hydronic heating systems.
The results are not yet able to be generalised for buildings in warmer climates due to the increased imbalance between the electrical and thermal energy demand.
ED:2010-02-01
INSSI record number: 38823
+ add basket
« previous | next »
INSSI