search query: @keyword Seebeck effect / total: 2
reference: 1 / 2
« previous | next »
Author:Hiltunen, Tuukka
Title:Graphene photodetection and the Seebeck effect
Grafeenipohjaiset fotodetektorit ja Seebeckin ilmiö
Publication type:Master's thesis
Publication year:2012
Pages:65      Language:   eng
Department/School:Teknillisen fysiikan laitos
Main subject:Fysiikka (laskennallinen fysiikka)   (Tfy-105)
Supervisor:Nieminen, Risto
Instructor:Harju, Ari
OEVS:
Electronic archive copy is available via Aalto Thesis Database.
Instructions

Reading digital theses in the closed network of the Aalto University Harald Herlin Learning Centre

In the closed network of Learning Centre you can read digital and digitized theses not available in the open network.

The Learning Centre contact details and opening hours: https://learningcentre.aalto.fi/en/harald-herlin-learning-centre/

You can read theses on the Learning Centre customer computers, which are available on all floors.

Logging on to the customer computers

  • Aalto University staff members log on to the customer computer using the Aalto username and password.
  • Other customers log on using a shared username and password.

Opening a thesis

  • On the desktop of the customer computers, you will find an icon titled:

    Aalto Thesis Database

  • Click on the icon to search for and open the thesis you are looking for from Aaltodoc database. You can find the thesis file by clicking the link on the OEV or OEVS field.

Reading the thesis

  • You can either print the thesis or read it on the customer computer screen.
  • You cannot save the thesis file on a flash drive or email it.
  • You cannot copy text or images from the file.
  • You cannot edit the file.

Printing the thesis

  • You can print the thesis for your personal study or research use.
  • Aalto University students and staff members may print black-and-white prints on the PrintingPoint devices when using the computer with personal Aalto username and password. Color printing is possible using the printer u90203-psc3, which is located near the customer service. Color printing is subject to a charge to Aalto University students and staff members.
  • Other customers can use the printer u90203-psc3. All printing is subject to a charge to non-University members.
Location:P1 Ark Aalto  71   | Archive
Keywords:Graphene
photodetector
Seebeck effect
tight-binding
Landauer-Büttiker
Green's function
optical transition rate
grafeeni
Seebeckin ilmiö
tight-binding metodi
Landauer-Büttiker formalismi
Greenin funktiot
optiset transitiotodennäköisyydet
Abstract (eng): Graphene is a very rapidly rising star among nanomaterials.
It has great potential in both terms of commercial applications, and understanding of fundamental physics.
Graphene's unique properties make it a promising new material in nano-electronics.
It has been proposed that it could one day replace silicon in semiconductor technology.
Among the numerous future applications are graphene based photodetectors.
In this field, graphene could offer fundamentally different applications compared to the traditional photodetectors based on the IV and III-V semiconductors.

The main subject of this Master's thesis is the photothermoelectric effect (or the Seebeck effect) in graphene.
It is considered as one of the main mechanisms in the generation of photocurrents in graphene.
The photoelectic effect is also briefly discussed in terms of optical transition rates.
This Master's thesis is a computational study.
The modeling of graphene's electronic states is done with the tight-binding approximation.
The photocurrents are simulated using the Landauer-Büttiker transport formalism and the Green's function method for the computation of the transmission probabilities.
The conductances and Seebeck coefficients of various graphene based systems are computed.
The obtained computational results are compared to existing computational and experimental studies.
Abstract (fin): Grafeeni on nouseva tähti nanomateriaalien joukossa.
Sillä on suuri potentiaali sekä sovelluksien että fysiikan ilmiöiden ymmärtämisen kannalta.
Grafeenin ainutlaatuiset sähköiset ominaisuudet tekevät siitä lupaavan materiaalin nanoelektroniikassa.
Pidetään mahdollisena, että grafeeni voisi tulevaisuudessa haastaa piin puolijohdeteknologiassa.
Eräs lukuisista mahdollisista sovelluksista grafeenille on grafeenipohjaiset fotodetektorit.
Grafeeni voisi mahdollistaa aivan uudenlaisten fotodetektorien valmistamisen.

Tämän diplomityön pääaihe on valoindusoitu lämpösähköinen ilmiö grafeenissa.
Sitä pidetään yhtenä päämekanismeista, joiden avulla grafeenin valoindusoidut sähkövirrat syntyvät.
Myös valosähköistä ilmiötä käsitellään lyhyesti liittyen optisiin transitiotodennäköisyyksiin.
Tämä diplomityö on luonteeltaan laskennallinen.
Grafeenin elektronirakenne lasketaan käyttäen tightbinding metodia.
Sähkövirtoja mallinnetaan Landauer-Büttiker kuljetusformalismin ja Greenin funktioiden avulla.
Laskemme useiden grafeenipohjaisten systeemien konduktanssit ja Seebeckkertoimet.
Saatuja laskennallisia tuloksia verrataan aikaisempaan laskennalliseen ja kokeelliseen tutkimukseen.
ED:2012-06-06
INSSI record number: 44666
+ add basket
« previous | next »
INSSI