search query: @keyword texturing / total: 3
reference: 2 / 3
« previous | next »
Author:Salpakari, Jyri
Title:Development of thin film and crystalline silicon solar cells with advanced light management based on plasmonic and dielectric nanostructures
Edistyneen plasmonisiin ja eristenanorakenteisiin perustuvan valonhallinnan kehitystä ohutkalvo- ja kiteisen piin aurinkokennoihin
Publication type:Master's thesis
Publication year:2012
Pages:[9] + 86      Language:   eng
Department/School:Teknillisen fysiikan laitos
Main subject:Ydin- ja energiatekniikka   (Tfy-56)
Supervisor:Lund, Peter
Instructor:Lenzmann, Frank
OEVS:
Electronic archive copy is available via Aalto Thesis Database.
Instructions

Reading digital theses in the closed network of the Aalto University Harald Herlin Learning Centre

In the closed network of Learning Centre you can read digital and digitized theses not available in the open network.

The Learning Centre contact details and opening hours: https://learningcentre.aalto.fi/en/harald-herlin-learning-centre/

You can read theses on the Learning Centre customer computers, which are available on all floors.

Logging on to the customer computers

  • Aalto University staff members log on to the customer computer using the Aalto username and password.
  • Other customers log on using a shared username and password.

Opening a thesis

  • On the desktop of the customer computers, you will find an icon titled:

    Aalto Thesis Database

  • Click on the icon to search for and open the thesis you are looking for from Aaltodoc database. You can find the thesis file by clicking the link on the OEV or OEVS field.

Reading the thesis

  • You can either print the thesis or read it on the customer computer screen.
  • You cannot save the thesis file on a flash drive or email it.
  • You cannot copy text or images from the file.
  • You cannot edit the file.

Printing the thesis

  • You can print the thesis for your personal study or research use.
  • Aalto University students and staff members may print black-and-white prints on the PrintingPoint devices when using the computer with personal Aalto username and password. Color printing is possible using the printer u90203-psc3, which is located near the customer service. Color printing is subject to a charge to Aalto University students and staff members.
  • Other customers can use the printer u90203-psc3. All printing is subject to a charge to non-University members.
Location:P1 Ark Aalto  31   | Archive
Keywords:solar cell
plasmonics
anti-reflection coating
light management
texturing
Asahi U
nanophotonics
aurinkokenno
plasmoniikka
antiheijastuspinnoite
valonhallinta
tekstuuri
Asahi U
nanofotoniikka
Abstract (eng): In this thesis, light scattering plasmonic nanostructures were studied as light management techniques in silicon solar cells with an experiment and a literature review, and solar cell designs was developed for future research on plasmonic and dielectric nanostructures.

The broad literature review on the state of the art of plasmonic scatterers revealed that such nanostructures on the front side of Si solar cells have been shown to be superior to flat cells with an optimized anti-reflection coating, but the use of texturing has not been outperformed.
Plasmonic nanostructures at the back, combined with Mie scatterers at the front side, have been shown to outperform the Asahi U texture for ultra-thin film a-Si solar cells.

The effect of computationally optimized arrays of Ag and Al nanoparticles on the front surface of thin-film a-Si:H solar cells on the photovoltaic performance of the device was studied experimentally.
The nanostructures enhanced EQE at long wavelengths, and decreased at short.
The Ag structure enhanced JSC by 4.6 % compared to the best measured flat cell structure with an anti-reflection coating, and the Al structure by 3.4 %.
To the best of the author's knowledge, an experimental demonstration of performance enhancement with an Al nanostructure has not been presented thus far in the literature.

Crystalline Si solar cell designs were developed for experiments with metallic and dielectric photonic nanostructures.
The designs are based on the IBC Si-HJ architecture and processed on mirror-polished FZ mono-Si wafers, with surface passivation implemented with SiNx for the cells with metallic nanoparticles and a-Si:H for the cells with dielectric nanoparticles.
Abstract (fin): Tässä diplomityössä tutkittiin valoa sirottavia plasmonisia nanorakenteita piiaurinkokennojen valonhallintamenetelminä kokeellisesti ja kirjallisuusselvityksellä, ja suunniteltiin sopivat aurinkokennot metallisilla ja eristenanohiukkasrakenteilla tapahtuvaa tulevaa tutkimusta varten.

Valoa sirottavien plasmonisten nanorakenteiden tekniikan nykytila selvitettiin laajalla kirjallisuuskatsauksella.
On osoitettu, että tällaiset nanorakenteet yhdistettynä antiheijastuspinnoitteeseen piiaurinkokennon etupinnalla ovat parempi valonhallintamenetelmä kuin tasainen kenno, jossa on pelkkä optimoitu antiheijastuspinnoite.
Teksturointia paremmin toimivaa kennon etupinnalla olevaa plasmonista nanorakennetta ei ole pystytty esittämään.
Kennon takapinnalla olevan plasmonisen nanorakenteen, yhdistettynä Mie-sirottajaan kennon etupinnalla on osoitettu toimivan teollisuudessa käytettyä Asahi U -tekstuuria paremmin ultraohuissa amorfisen piin aurinkokennoissa.

Laskennallisesti optimoitujen, a-Si:H-ohutkalvoaurinkokennojen etupinnalle valmistettujen Ag- ja Al- nanohiukkashilojen vaikutusta laitteen toimintaan tutkittiin kokeellisesti.
Nanorakenteet paransivat laitteen ulkoista kvanttihyötysuhdetta pitkillä aallonpituuksilla ja heikensivät sitä lyhyillä.
Hopeananohiukkasrakenne paransi oikosulkuvirtaa 4,6 % verrattuna parhaaseen mitattuun tasaiseen pelkällä antiheijastuspinnoitteella varustettuun kennoon, alumiininanohiukkasrakenne 3,4 %.
Kirjallisuudesta ei löytynyt viitettä kokeellisesti osoitetusta aurinkokennon oikosulkuvirran paranemisesta alumiininanohiukkasrakenteella.

Kiteisen piin aurinkokennot suunniteltiin metallisilla ja eristenanohiukkasrakenteilla tapahtuvaa tulevaa tutkimusta varten.
Kennot perustuvat IBC-heteroliitosarkkitehtuuriin, ne prosessoidaan mekaanis-kemiallisesti kiillotetuille FZ-yksikiteisille piikiekoille, ja niiden pintapassivointi toteutetaan piinitridillä metallisten nanohiukkasten tapauksessa ja amorfisella piillä eristenanohiukkasten tapauksessa.
ED:2012-12-19
INSSI record number: 45727
+ add basket
« previous | next »
INSSI