search query: @instructor Jääskeläinen, Juha / total: 3
reference: 2 / 3
« previous | next »
Author:Salo, Mikko Johannes
Title:Korkean teräsbetonisen kotelorakenteella jäykistetyn toimistorakennuksen rungon suunnittelu
Design of tall office buildings braced with a concrete core
Publication type:Master's thesis
Publication year:2012
Pages:84      Language:   fin
Department/School:Rakennustekniikan laitos
Main subject:Talonrakennustekniikka   (Rak-43)
Supervisor:Puttonen, Jari
Instructor:Jääskeläinen, Juha
OEVS:
Electronic archive copy is available via Aalto Thesis Database.
Instructions

Reading digital theses in the closed network of the Aalto University Harald Herlin Learning Centre

In the closed network of Learning Centre you can read digital and digitized theses not available in the open network.

The Learning Centre contact details and opening hours: https://learningcentre.aalto.fi/en/harald-herlin-learning-centre/

You can read theses on the Learning Centre customer computers, which are available on all floors.

Logging on to the customer computers

  • Aalto University staff members log on to the customer computer using the Aalto username and password.
  • Other customers log on using a shared username and password.

Opening a thesis

  • On the desktop of the customer computers, you will find an icon titled:

    Aalto Thesis Database

  • Click on the icon to search for and open the thesis you are looking for from Aaltodoc database. You can find the thesis file by clicking the link on the OEV or OEVS field.

Reading the thesis

  • You can either print the thesis or read it on the customer computer screen.
  • You cannot save the thesis file on a flash drive or email it.
  • You cannot copy text or images from the file.
  • You cannot edit the file.

Printing the thesis

  • You can print the thesis for your personal study or research use.
  • Aalto University students and staff members may print black-and-white prints on the PrintingPoint devices when using the computer with personal Aalto username and password. Color printing is possible using the printer u90203-psc3, which is located near the customer service. Color printing is subject to a charge to Aalto University students and staff members.
  • Other customers can use the printer u90203-psc3. All printing is subject to a charge to non-University members.
Location:P1 Ark Aalto     | Archive
Keywords:high-rise building
tall office building
core structure
core bracing
korkea toimistorakennus
kotelorakenne
kotelojäykistys
leikkausseinä
Abstract (eng): Lateral loading due to wind is a major factor that causes the design of high-rise buildings to differ from that of low-to medium-rise buildings.
The wind load not only acts on a larger surface area but the wind velocity increases as the earth's surfaces retarding effect is reduced as height increases.
As a result to these factors, high-rise buildings are subjected to much greater wind loads.
The characteristics of wind pressures on a structure are a function of the characteristics of the approaching wind and the geometry of the structure under consideration.
The pressures are not steady but highly fluctuating.
The fluctuating pressures can result in dynamic excitation in high-rise buildings which are often dynamically wind sensitive due to their slenderness.

The provision of adequate lateral stiffness is important in the design of a tall building for several reasons.
Lateral deflections must be limited to prevent second-order effects due to gravity loading being of such a magnitude as to precipitate collapse.
In terms of the serviceability limit states, deflections must be maintained at a sufficiently low level to allow the proper functioning of the building and to prevent motions becoming large enough to cause discomfort to occupants.
Because of the high short-term transient moment and shears that arise from wind loads, attention must be given to the design of the foundation system.
This is especially important if the pre-compression due to the dead weight of the building is not sufficient to overcome the highest tensile stresses caused by wind moments leading to uplift on the foundation.

Reinforced concrete shear walls are ideally suited for bracing buildings because of their very high in-plane stiffness and strength.
It is common to link individual shear walls together to form core structures for additional bending stiffness.
Having one or multiple core structures as a bracing system of the building has many effects on the gravity system of the building, as is highlighted in this thesis.
Office buildings often comprise a single central service core surrounded by a flexible frame.
The dimensions and the shapes of the core structure cross-sections as well as the arrangement of the bracing components have a big effect on the performance of the building structure.

According to the calculations done in this thesis the height of 140 meters is close to the maximum height of a building braced by core structures when the concrete tensile stresses are limited to the design value of the concrete tensile stress in the ultimate limit state.
Limiting the stresses of the core structure is useful for preventing challenging foundation design solutions.
Limiting the stresses of the core structure also prevents the cracking of the concrete.
Due to the high bending stiffness values of uncracked core structures, the lateral deflections and the second-order effects due to gravity loading remain small.
Abstract (fin): Korkea rakentaminen asettaa erityisvaatimuksia rakennuksen rungolle.
Rakennuksen korkeuden kasvaessa kasvaa rakennuksen tuulelle altistuva pinta-ala ja maanpinnan rosoisuuden tuulta hidastava vaikutus pienenee.
Näiden tekijöiden johdosta korkeisiin rakennuksiin kohdistuu huomattavasti suurempi tuulikuorma kuin mataliin tai keskikorkeisiin rakennuksiin.
Tuuli on luonteeltaan vaihtelevaa ja se voi aikaansaada dynaamisia vaikutuksia korkeissa rakennuksissa niiden hoikkuuden seurauksena.
Rakennuksen korkeuden ja siihen kohdistuvien suurien vaakakuormien seurauksena rakennuksen yläpää saa siirtymiä ja perustuksiin voi kohdistua vetoa.
Rakennuksen siirtymiä halutaan rajoittaa rakennuksen toiminnallisuuden ja käyttömukavuuden varmistamiseksi sekä pystykuorman epäkeskisyydestä aiheutuvien toisen kertaluvun vaikutusten minimoimiseksi.
Rakennuksen perustusten vetojännityksiltä halutaan välttyä sen aiheuttaessa perustamiseen liittyviä lisähaasteita.

Teräsbetonisia seiniä käytetään usein talonrakennuksessa jäykistämään rakennuksen runko.
Kotelojäykistyksessä jatkuvat teräsbetoniseinät kytketään yhteen, jolloin kotelorakenteen taivutusjäykkyys on huomattavasti suurempi kuin sen yksittäisten seinien jäykkyyksien summa.
Työssä esitellään kotelojäykisteisen rakennusrungon toiminta ja jäykistysjärjestelmän vaikutus muihin runkorakenteisiin.
Kotelojäykistys soveltuu käytettäväksi toimistorakennuksissa, joilta odotetaan tilojen käyttötarkoituksen vuoksi muuntojoustavuutta.
Jäykistävien kotelorakenteiden koko, muoto ja sijoittelu vaikuttavat merkittävästi rakennuksen toimintaan ja niiden merkitys korostuu korkeassa rakentamisessa.

Työssä tehtyjen laskelmien perusteella 140 metriä lähentelee maksimikorkeutta rakennukselle, jonka jäykistysjärjestelmä koostuu yksinomaan jäykistävistä kotelorakenteista, jos pyrkimyksenä on rakenteen säilyminen halkeamattomana murtorajatilassa.
Kotelorakenteiden jännitysten rajoittamisen avulla vältytään haastavilta perustamisratkaisuilta ja kotelorakenteen jäykkyys ei tällöin kärsi betonin halkeilusta.
Laskelmien perusteella rakennuksen taipumasta ei tällöin muodostu rakenteita mitoittavaa tekijää ja jäykistysjärjestelmän toisen kertaluvun vaikutukset jäävät pieniksi.
ED:2013-02-27
INSSI record number: 45880
+ add basket
« previous | next »
INSSI