search query: @instructor Zakharov, Alexey / total: 7
reference: 4 / 7
« previous | next »
Author:Özdenkci, Karhan
Title:Fault diagnosis of large-scale systems
Publication type:Master's thesis
Publication year:2011
Pages:v + 130      Language:   eng
Department/School:Kemian laitos
Main subject:Prosessien ohjaus ja hallinta   (Kem-90)
Supervisor:Jämsä-Jounela, Sirkka-Liisa
Instructor:Zakharov, Alexey
OEVS:
Electronic archive copy is available via Aalto Thesis Database.
Instructions

Reading digital theses in the closed network of the Aalto University Harald Herlin Learning Centre

In the closed network of Learning Centre you can read digital and digitized theses not available in the open network.

The Learning Centre contact details and opening hours: https://learningcentre.aalto.fi/en/harald-herlin-learning-centre/

You can read theses on the Learning Centre customer computers, which are available on all floors.

Logging on to the customer computers

  • Aalto University staff members log on to the customer computer using the Aalto username and password.
  • Other customers log on using a shared username and password.

Opening a thesis

  • On the desktop of the customer computers, you will find an icon titled:

    Aalto Thesis Database

  • Click on the icon to search for and open the thesis you are looking for from Aaltodoc database. You can find the thesis file by clicking the link on the OEV or OEVS field.

Reading the thesis

  • You can either print the thesis or read it on the customer computer screen.
  • You cannot save the thesis file on a flash drive or email it.
  • You cannot copy text or images from the file.
  • You cannot edit the file.

Printing the thesis

  • You can print the thesis for your personal study or research use.
  • Aalto University students and staff members may print black-and-white prints on the PrintingPoint devices when using the computer with personal Aalto username and password. Color printing is possible using the printer u90203-psc3, which is located near the customer service. Color printing is subject to a charge to Aalto University students and staff members.
  • Other customers can use the printer u90203-psc3. All printing is subject to a charge to non-University members.
Location:P1 Ark Aalto  2065   | Archive
Keywords:fault diagnosis
large-scale processes
diagnosis of control loops
Abstract (eng):This thesis investigates fault diagnosis of large-scale processes in accordance with characteristics of large-scale processes and practical suitability. The literature part presents a background about typical fault diagnosis methods and diagnosis of large-scale processes. It is stated that the typical methods are insufficient for diagnosing large-scale processes. Those methods do not cover the ease in development, online computational requirement and adaptability issues of large-scale processes. Therefore, process decomposition plays a key role in diagnosis of large-scale processes. Effective process decomposition should minimize the interactions among subsystems and maximize the interactions within each subsystem, thus providing effective fault isolation. Consequently, process decomposition-based strategies are introduced, namely top-down and bottom-up. However, all implemented methods under these strategies have severe practical challenges: the usage of single method for the whole process, weak detection, insufficient attention to process decomposition, and, the fault modeling requirement.

The experimental part of this thesis investigates diagnosis of control loops, due to conflicting objective with diagnosis and process decomposition criteria. A method is proposed for diagnosis of interacting control loops. The proposed method aims to exclude the impact of variations of disturbance input variables from residuals and to distinguish all four types of faults (output sensor, actuator, and disturbance sensor and process faults). It is concluded that the proposed method is very effective for interacting control loops.

The future strategy should address the different process natures of subsystems in a large process and minimize the fault modeling requirement. Such strategy can involve three steps to develop: process decomposition, constructing a diagnosis technique for each subsystem and combining the results.
ED:2014-11-21
INSSI record number: 50090
+ add basket
« previous | next »
INSSI