haku: @keyword social networks / yhteensä: 13
viite: 6 / 13
Tekijä: | Chistiakova, Tatiana |
Työn nimi: | The problem of time series analysis and incomlete data: Real-world applications |
Julkaisutyyppi: | Diplomityö |
Julkaisuvuosi: | 2013 |
Sivut: | 53 Kieli: eng |
Koulu/Laitos/Osasto: | Perustieteiden korkeakoulu |
Oppiaine: | Informaatiotekniikka (T-115) |
Valvoja: | Simula, Olli |
Ohjaaja: | Lendasse, Amaury |
OEVS: | Sähköinen arkistokappale on luettavissa Aalto Thesis Databasen kautta.
Ohje Digitaalisten opinnäytteiden lukeminen Aalto-yliopiston Harald Herlin -oppimiskeskuksen suljetussa verkossaOppimiskeskuksen suljetussa verkossa voi lukea sellaisia digitaalisia ja digitoituja opinnäytteitä, joille ei ole saatu julkaisulupaa avoimessa verkossa. Oppimiskeskuksen yhteystiedot ja aukioloajat: https://learningcentre.aalto.fi/fi/harald-herlin-oppimiskeskus/ Opinnäytteitä voi lukea Oppimiskeskuksen asiakaskoneilla, joita löytyy kaikista kerroksista.
Kirjautuminen asiakaskoneille
Opinnäytteen avaaminen
Opinnäytteen lukeminen
Opinnäytteen tulostus
|
Sijainti: | P1 Ark Aalto 8667 | Arkisto |
Avainsanat: | time series prediction social networks variable selection forward-backward algorithm missing values water temperature data imputations ensemble of SOMs EOF mixture of gaussians |
Tiivistelmä (eng): | One of the characteristics of almost any data collection is the presence of outstanding series and missing values. The risk to get the incomplete and hard processed data increases especially if the data is characterized with a large size or collected manually. The presence of missing values in the data cannot be underestimated. In addition to containing important information, missing values are often correlated with other values. Furthermore, the predicted data allows analysing the data and performing future forecast on obtained results. In case of data analysis, it is essential to study data properties carefully. The data analysis occurs in every sphere, e.g. sociology, finance, environment, science, wherever there are issues to be studied and explored. Social networks have been always a reach topic to explore. Being highly dynamic objects, the issues require a deep and careful investigation. Moreover, due to their properties, like a small number of samples and a high amount of variables at the same time, online data seeks for additional methods to highlight and uncover interesting parts. The proposed methodology of a modified Forward-Backward algorithm aims to analyse social networks presented as time series data sets. All the time, people study deeply burning issues, related to climate and economy. Since these topics are of a particular interest, in the thesis, the imputations of missing values are performed on real-world data sets from climatology and financial areas. The application shows the possible variety and importance of predicting the missing values. There exist a large number of methods which allow imputing missing values. A number of promising algorithms is investigated and compared due to data sets difference -The EOF, the Ensemble of SOMs and the Mixture of Gaussians. |
ED: | 2013-08-07 |
INSSI tietueen numero: 47025
+ lisää koriin
INSSI